Cloudain LogoCloudainInnovation Hub
Seeing the Invisible: Building AI Observability That Tells the Whole Story

Posted by

Cloudain Editorial Team

AI Observability

Seeing the Invisible: Building AI Observability That Tells the Whole Story

How Cloudain built comprehensive observability for AI systems-transforming black-box models into transparent, auditable, and trustworthy business partners through telemetry and compliance dashboards.

Author

Cloudain SRE Team

Published

2025-11-04

Read Time

9 min read

Introduction

2:47 AM: PagerDuty alert: "Securitain AI latency spike"

2:48 AM: Engineer wakes up, checks logs

2:49 AM: "Which AI model failed? What was the input? Did it retry? Was data leaked?"

2:50 AM: Realizes: We can't see what the AI is doing.

That 3 AM wake-up call changed everything. We built observability that doesn't just monitor uptime-it reveals intent, latency, safety metrics, and business impact across every AI interaction.

This article shares how Cloudain transformed AI from a black box into a transparent, auditable system that engineers, compliance teams, and executives can trust.

Observability as the Foundation of Responsible AI

Why AI Needs Different Observability

Traditional Software:

CODE
Request → Function → Database → Response

Observable: Latency, errors, throughput

AI Systems:

CODE
Request → Intent Classification → Context Loading →
Model Inference → Safety Checks → Response Generation →
Audit Logging → Delivery

Need to Observe:

  • Which intent was detected (and confidence)
  • Which model was used (and why)
  • How much context was loaded (tokens)
  • What safety guardrails triggered
  • Whether PII was detected/redacted
  • Total cost of the interaction
  • Business outcome (resolved? escalated?)

The Black Box Problem

Without Observability:

CODE
User: "Cancel my subscription"
AI: [some response]
Engineer: "Did it work?"
Team: "¯\_(ツ)_/¯"

With Observability:

CODE
User: "Cancel my subscription"

Telemetry:
- Intent: CancelSubscription (confidence: 0.94)
- Model: bedrock-claude-v2 (primary)
- Context: 2,340 tokens loaded
- Policy Check: Requires manager approval
- Guardrails: 0 triggered
- Latency: 680ms
- Cost: $0.042
- Outcome: Approval workflow created
- User Satisfaction: 9/10 (post-interaction survey)

CoreCloud Compliance Integration

Why Compliance Teams Care About AI Observability

SOC 2 Auditor Questions:

  • "How do you ensure AI doesn't access unauthorized data?"
  • "Can you prove AI decisions are auditable?"
  • "Show me access logs for the past 90 days"

HIPAA Requirements:

  • Who accessed patient data?
  • When was PHI processed by AI?
  • Were encryption standards maintained?

GDPR Obligations:

  • Right to explanation: Why did AI make this decision?
  • Data minimization: Was only necessary data used?
  • Retention: When will AI-processed data be deleted?

CoreCloud's Audit Trail

TYPESCRIPT
300">interface ComplianceEvent {
  eventId: string
  timestamp: number
  userId: string
  brand: string
  action: string
  intent?: string

  // Data access
  dataAccessed: {
    types: string[]          // ["customer_name", "billing_info"]
    classification: string   // "PII", "PHI", "financial"
    justification: string    // Why this data was needed
  }

  // AI-specific
  aiMetadata?: {
    modelUsed: string
    inputTokens: number
    outputTokens: number
    piiDetected: boolean
    piiRedacted: boolean
    guardrailsTriggered: string[]
  }

  // Compliance
  complianceFrameworks: string[]  // ["SOC2", "GDPR", "HIPAA"]
  retentionPolicy: string

  // Audit
  ipAddress: string
  userAgent: string
  sessionId: string
}

Example Event:

JSON
{
  "eventId": "evt_20250122_abc123",
  "timestamp": 1705910400000,
  "userId": "user_789",
  "brand": "securitain",
  "action": "ai_query_processed",
  "intent": "CheckComplianceStatus",

  "dataAccessed": {
    "types": ["company_name", "compliance_framework", "audit_logs"],
    "classification": "business_confidential",
    "justification": "User requested compliance status for their organization"
  },

  "aiMetadata": {
    "modelUsed": "bedrock-claude-v2",
    "inputTokens": 1240,
    "outputTokens": 580,
    "piiDetected": 300">false,
    "piiRedacted": 300">false,
    "guardrailsTriggered": []
  },

  "complianceFrameworks": ["SOC2", "GDPR"],
  "retentionPolicy": "7_years",

  "ipAddress": "203.0.113.42",
  "userAgent": "Mozilla/5.0...",
  "sessionId": "sess_xyz789"
}

Compliance Dashboards

For Auditors:

TYPESCRIPT
// Generate compliance report
300">const report = 300">await CoreCloud.generateComplianceReport({
  startDate: '2024-01-01',
  endDate: '2024-12-31',
  framework: 'SOC2',
  brand: 'securitain'
})

// Report includes:
// - Total AI interactions: 2.4M
// - PII access events: 847K (all authorized)
// - Guardrail triggers: 1,203 (all handled correctly)
// - Unauthorized access attempts: 0
// - Data retention compliance: 100%
// - Encryption compliance: 100%

Real-Time Compliance Alerts:

TYPESCRIPT
// Alert on suspicious activity
300">await CloudWatch.putMetricAlarm({
  AlarmName: 'UnauthorizedAIDataAccess',
  MetricName: 'UnauthorizedAccess',
  Namespace: 'Cloudain/Compliance',
  Threshold: 1,
  ComparisonOperator: 'GreaterThanOrEqualToThreshold',
  AlarmActions: [
    securityTeamSNS,
    complianceTeamSNS,
    autoBlockUserLambda
  ]
})

AI Telemetry Streams via AgenticCloud

What We Capture

TYPESCRIPT
300">interface AITelemetry {
  // Request metadata
  requestId: string
  timestamp: number
  brand: string
  userId: string
  sessionId: string

  // Intent analysis
  intent: {
    detected: string
    confidence: number
    alternativeIntents: Array<{
      name: string
      confidence: number
    }>
    classificationLatency: number
  }

  // Context & memory
  context: {
    tokensLoaded: number
    messagesInContext: number
    cacheHit: boolean
    contextLoadLatency: number
  }

  // Model inference
  model: {
    provider: string
    modelId: string
    parameters: {
      temperature: number
      maxTokens: number
      topP?: number
    }
    inputTokens: number
    outputTokens: number
    inferenceLatency: number
    cost: number
    retryCount: number
    fallbackUsed: boolean
  }

  // Safety & compliance
  safety: {
    piiDetected: boolean
    piiRedacted: boolean
    guardrailsChecked: string[]
    guardrailsTriggered: string[]
    contentFiltered: boolean
  }

  // Response quality
  response: {
    completed: boolean
    truncated: boolean
    characterCount: number
    sentimentScore?: number
  }

  // Performance
  performance: {
    totalLatency: number
    breakdown: {
      auth: number
      intentClassification: number
      contextLoading: number
      modelInference: number
      safetyChecks: number
      responseFormatting: number
    }
  }

  // Business metrics
  business: {
    resolved: boolean
    escalated: boolean
    userSatisfaction?: number
    followUpRequired: boolean
  }

  // Errors
  errors?: Array<{
    300">type: string
    message: string
    timestamp: number
    recovered: boolean
  }>
}

Real-Time Streaming

TYPESCRIPT
// Stream telemetry to Kinesis
300">async 300">function emitTelemetry(telemetry: AITelemetry) {
  300">await Kinesis.putRecord({
    StreamName: &#39;cloudain-ai-telemetry&#39;,
    PartitionKey: telemetry.brand,
    Data: JSON.stringify(telemetry)
  })

  // Also log to CloudWatch for real-time dashboards
  300">await CloudWatch.putMetricData({
    Namespace: &#39;Cloudain/AgenticCloud&#39;,
    MetricData: [
      {
        MetricName: &#39;AILatency&#39;,
        Value: telemetry.performance.totalLatency,
        Unit: &#39;Milliseconds&#39;,
        Dimensions: [
          { Name: &#39;Brand&#39;, Value: telemetry.brand },
          { Name: &#39;Intent&#39;, Value: telemetry.intent.detected }
        ]
      },
      {
        MetricName: &#39;TokenUsage&#39;,
        Value: telemetry.model.inputTokens + telemetry.model.outputTokens,
        Unit: &#39;Count&#39;,
        Dimensions: [
          { Name: &#39;Brand&#39;, Value: telemetry.brand },
          { Name: &#39;Model&#39;, Value: telemetry.model.modelId }
        ]
      },
      {
        MetricName: &#39;AIFost&#39;,
        Value: telemetry.model.cost,
        Unit: &#39;None&#39;,
        Dimensions: [
          { Name: &#39;Brand&#39;, Value: telemetry.brand }
        ]
      }
    ]
  })
}

Real-Time Dashboards for CX and Compliance

Executive Dashboard

KPIs Tracked:

  • Total conversations (hourly, daily, monthly)
  • Average cost per conversation
  • User satisfaction scores
  • Resolution rate
  • Escalation rate
  • Model performance by brand

Implementation:

TYPESCRIPT
// CloudWatch Dashboard
300">const dashboard = {
  widgets: [
    // Total Conversations
    {
      300">type: &#39;metric&#39;,
      properties: {
        metrics: [
          [&#39;Cloudain/AgenticCloud&#39;, &#39;Conversations&#39;, { stat: &#39;Sum&#39; }]
        ],
        period: 3600,
        stat: &#39;Sum&#39;,
        region: &#39;us-east-1&#39;,
        title: &#39;Conversations per Hour&#39;
      }
    },

    // Average Latency by Brand
    {
      300">type: &#39;metric&#39;,
      properties: {
        metrics: [
          [&#39;...&#39;, { stat: &#39;Average&#39;, label: &#39;Growain&#39; }],
          [&#39;...&#39;, { stat: &#39;Average&#39;, label: &#39;Securitain&#39; }],
          [&#39;...&#39;, { stat: &#39;Average&#39;, label: &#39;MindAgain&#39; }]
        ],
        title: &#39;Average Latency by Brand&#39;,
        yAxis: { left: { min: 0, max: 2000 }}
      }
    },

    // Cost Tracking
    {
      300">type: &#39;metric&#39;,
      properties: {
        metrics: [
          [&#39;Cloudain/AgenticCloud&#39;, &#39;AICost&#39;, { stat: &#39;Sum&#39; }]
        ],
        title: &#39;AI Cost (Last 24 Hours)&#39;,
        stat: &#39;Sum&#39;,
        period: 86400
      }
    },

    // User Satisfaction
    {
      300">type: &#39;metric&#39;,
      properties: {
        metrics: [
          [&#39;Cloudain/Business&#39;, &#39;UserSatisfaction&#39;, { stat: &#39;Average&#39; }]
        ],
        title: &#39;Average User Satisfaction (1-10)&#39;,
        yAxis: { left: { min: 0, max: 10 }}
      }
    }
  ]
}

Engineering Dashboard

Technical Metrics:

  • P50, P95, P99 latency
  • Error rates by type
  • Model fallback frequency
  • Cache hit rates
  • Token usage trends
  • Retry and timeout events
TYPESCRIPT
// Latency percentiles
300">const latencyMetrics = {
  widget: {
    300">type: &#39;metric&#39;,
    properties: {
      metrics: [
        [&#39;Cloudain/AgenticCloud&#39;, &#39;AILatency&#39;, { stat: &#39;p50&#39; }],
        [&#39;...&#39;, { stat: &#39;p95&#39; }],
        [&#39;...&#39;, { stat: &#39;p99&#39; }]
      ],
      title: &#39;Latency Percentiles&#39;,
      period: 300
    }
  }
}

// Error tracking
300">const errorMetrics = {
  widget: {
    300">type: &#39;metric&#39;,
    properties: {
      metrics: [
        [&#39;Cloudain/AgenticCloud&#39;, &#39;Errors&#39;, { stat: &#39;Sum&#39; }],
        [&#39;...&#39;, &#39;IntentClassificationErrors&#39;, { stat: &#39;Sum&#39; }],
        [&#39;...&#39;, &#39;ModelInferenceErrors&#39;, { stat: &#39;Sum&#39; }],
        [&#39;...&#39;, &#39;ContextLoadErrors&#39;, { stat: &#39;Sum&#39; }]
      ],
      title: &#39;Error Breakdown&#39;,
      period: 300
    }
  }
}

Compliance Dashboard

Audit Metrics:

  • PII access events
  • Guardrail triggers
  • Policy violations
  • Data retention compliance
  • Encryption status
  • Access control events
TYPESCRIPT
// Compliance widget
300">const complianceWidget = {
  widget: {
    300">type: &#39;log&#39;,
    properties: {
      query: &#96;
        SOURCE &#39;cloudain-audit-logs&#39;
        | fields @timestamp, userId, action, dataAccessed
        | filter action = &#39;pii_accessed&#39;
        | stats count() by userId
        | sort count desc
      &#96;,
      title: &#39;PII Access by User (Last 24h)&#39;,
      region: &#39;us-east-1&#39;
    }
  }
}

// Guardrail monitoring
300">const guardrailWidget = {
  widget: {
    300">type: &#39;metric&#39;,
    properties: {
      metrics: [
        [&#39;Cloudain/Safety&#39;, &#39;GuardrailTriggered&#39;, { stat: &#39;Sum&#39; }]
      ],
      title: &#39;Safety Guardrail Activations&#39;,
      annotations: {
        horizontal: [{
          value: 100,
          label: &#39;Review Threshold&#39;
        }]
      }
    }
  }
}

Distributed Tracing

X-Ray Integration

TYPESCRIPT
// Instrument AI request flow
300">import AWSXRay 300">from &#39;aws-xray-sdk-core&#39;

300">async 300">function processAIRequest(request: Request) {
  300">const segment = AWSXRay.getSegment()

  // Intent classification subsegment
  300">const intentSegment = segment.addNewSubsegment(&#39;IntentClassification&#39;)
  intentSegment.addAnnotation(&#39;brand&#39;, request.brand)

  300">const intent = 300">await classifyIntent(request.message)

  intentSegment.addMetadata(&#39;result&#39;, {
    intent: intent.name,
    confidence: intent.confidence
  })
  intentSegment.close()

  // Context loading subsegment
  300">const contextSegment = segment.addNewSubsegment(&#39;ContextLoading&#39;)
  300">const context = 300">await loadContext(request.sessionId)
  contextSegment.addMetadata(&#39;tokensLoaded&#39;, context.tokens)
  contextSegment.close()

  // Model inference subsegment
  300">const modelSegment = segment.addNewSubsegment(&#39;ModelInference&#39;)
  modelSegment.addAnnotation(&#39;model&#39;, &#39;bedrock-claude-v2&#39;)

  300">const response = 300">await generateResponse(intent, context)

  modelSegment.addMetadata(&#39;tokens&#39;, {
    input: response.inputTokens,
    output: response.outputTokens,
    cost: response.cost
  })
  modelSegment.close()

  300">return response
}

Trace Visualization:

CODE
Request (850ms total)
├─ Auth Verification (15ms)
├─ Intent Classification (120ms)
│  ├─ Load model (45ms)
│  └─ Inference (75ms)
├─ Context Loading (85ms)
│  ├─ Redis lookup (5ms)
│  └─ DynamoDB query (80ms)
├─ Model Inference (580ms) ← Bottleneck
│  ├─ Token encoding (20ms)
│  ├─ Bedrock API call (540ms)
│  └─ Response parsing (20ms)
├─ Safety Checks (35ms)
└─ Response Formatting (15ms)

Alerting and Anomaly Detection

Smart Alerts

TYPESCRIPT
// Alert on latency degradation
300">await CloudWatch.putMetricAlarm({
  AlarmName: &#39;AILatencyDegradation&#39;,
  ComparisonOperator: &#39;GreaterThanThreshold&#39;,
  EvaluationPeriods: 2,
  MetricName: &#39;AILatency&#39;,
  Namespace: &#39;Cloudain/AgenticCloud&#39;,
  Period: 300,
  Statistic: &#39;Average&#39;,
  Threshold: 1000, // 1 second
  ActionsEnabled: 300">true,
  AlarmActions: [engineeringSNS],
  AlarmDescription: &#39;AI response time exceeds 1 second&#39;
})

// Alert on cost spike
300">await CloudWatch.putMetricAlarm({
  AlarmName: &#39;AICostSpike&#39;,
  ComparisonOperator: &#39;GreaterThanThreshold&#39;,
  EvaluationPeriods: 1,
  MetricName: &#39;AICost&#39;,
  Namespace: &#39;Cloudain/AgenticCloud&#39;,
  Period: 3600,
  Statistic: &#39;Sum&#39;,
  Threshold: 500, // $500/hour
  ActionsEnabled: 300">true,
  AlarmActions: [
    financeTeamSNS,
    autoThrottleLambda
  ]
})

// Alert on guardrail triggers
300">await CloudWatch.putMetricAlarm({
  AlarmName: &#39;HighGuardrailActivity&#39;,
  ComparisonOperator: &#39;GreaterThanThreshold&#39;,
  EvaluationPeriods: 1,
  MetricName: &#39;GuardrailTriggered&#39;,
  Namespace: &#39;Cloudain/Safety&#39;,
  Period: 300,
  Statistic: &#39;Sum&#39;,
  Threshold: 50,
  ActionsEnabled: 300">true,
  AlarmActions: [securityTeamSNS]
})

Anomaly Detection

TYPESCRIPT
// ML-powered anomaly detection
300">const anomalyDetector = {
  MetricName: &#39;AILatency&#39;,
  Namespace: &#39;Cloudain/AgenticCloud&#39;,
  Stat: &#39;Average&#39;,
  Dimensions: [{ Name: &#39;Brand&#39;, Value: &#39;growain&#39; }]
}

300">await CloudWatch.putAnomalyDetector({
  ...anomalyDetector,
  Configuration: {
    ExcludedTimeRanges: [
      {
        StartTime: 300">new Date(&#39;2024-12-25T00:00:00Z&#39;),
        EndTime: 300">new Date(&#39;2024-12-26T00:00:00Z&#39;)
      }
    ]
  }
})

// Alert on anomalies
300">await CloudWatch.putMetricAlarm({
  AlarmName: &#39;AILatencyAnomaly&#39;,
  ComparisonOperator: &#39;LessThanLowerOrGreaterThanUpperThreshold&#39;,
  EvaluationPeriods: 2,
  Metrics: [
    {
      Id: &#39;m1&#39;,
      ReturnData: 300">true,
      MetricStat: {
        Metric: anomalyDetector,
        Period: 300,
        Stat: &#39;Average&#39;
      }
    },
    {
      Id: &#39;ad1&#39;,
      Expression: &#39;ANOMALY_DETECTION_BAND(m1, 2)&#39;, // 2 std deviations
      Label: &#39;AILatency (expected)&#39;
    }
  ],
  ThresholdMetricId: &#39;ad1&#39;,
  AlarmActions: [engineeringSNS]
})

Log Aggregation and Search

Structured Logging

TYPESCRIPT
// Structured log format
300">const logger = winston.createLogger({
  format: winston.format.combine(
    winston.format.timestamp(),
    winston.format.json()
  ),
  transports: [
    300">new winston.transports.Console(),
    300">new CloudWatchTransport({
      logGroupName: &#39;cloudain-ai-logs&#39;,
      logStreamName: &#96;${brand}-${environment}&#96;
    })
  ]
})

// Log AI interaction
logger.info(&#39;AI interaction completed&#39;, {
  requestId: request.id,
  userId: user.id,
  brand: &#39;growain&#39;,
  intent: &#39;CampaignAnalysis&#39;,
  latency: 680,
  tokens: { input: 1200, output: 350 },
  cost: 0.042,
  satisfied: 300">true
})

CloudWatch Insights Queries

SQL
-- Top 10 slowest intents
fields @timestamp, intent, latency
| filter brand = "growain"
| stats avg(latency) as avg_latency by intent
| sort avg_latency desc
| limit 10

-- Cost by brand (last 24 hours)
fields @timestamp, brand, cost
| stats sum(cost) as total_cost by brand
| sort total_cost desc

-- Error analysis
fields @timestamp, error.300">type, error.message, brand, intent
| filter ispresent(error)
| stats count() as error_count by error.300">type, brand
| sort error_count desc

-- Guardrail triggers
fields @timestamp, userId, guardrail, intent
| filter guardrailsTriggered.0 != ""
| stats count() by guardrail
| sort count desc

Business Intelligence Integration

Data Warehouse Pipeline

TYPESCRIPT
// Stream telemetry to S3 for analytics
Kinesis → Firehose → S3 → Glue → Athena/Redshift

// Firehose configuration
300">const firehoseConfig = {
  DeliveryStreamName: &#39;cloudain-ai-analytics&#39;,
  S3DestinationConfiguration: {
    BucketARN: &#39;arn:aws:s3:::cloudain-analytics&#39;,
    Prefix: &#39;ai-telemetry/year=!{timestamp:yyyy}/month=!{timestamp:MM}/day=!{timestamp:dd}/&#39;,
    BufferingHints: {
      SizeInMBs: 128,
      IntervalInSeconds: 300
    },
    CompressionFormat: &#39;GZIP&#39;,
    DataFormatConversionConfiguration: {
      Enabled: 300">true,
      SchemaConfiguration: {
        DatabaseName: &#39;cloudain_analytics&#39;,
        TableName: &#39;ai_telemetry&#39;,
        Region: &#39;us-east-1&#39;,
        CatalogId: AWS_ACCOUNT_ID
      },
      OutputFormatConfiguration: {
        Serializer: {
          ParquetSerDe: {}
        }
      }
    }
  }
}

Analytics Queries

SQL
-- User engagement patterns
SELECT
  brand,
  intent,
  COUNT(*) as interaction_count,
  AVG(user_satisfaction) as avg_satisfaction,
  AVG(total_latency) as avg_latency_ms,
  SUM(cost) as total_cost
FROM ai_telemetry
WHERE date >= CURRENT_DATE - INTERVAL &#39;30&#39; DAY
GROUP BY brand, intent
ORDER BY interaction_count DESC

-- Model performance comparison
SELECT
  model_id,
  AVG(inference_latency) as avg_latency,
  AVG(output_tokens) as avg_output_length,
  AVG(cost) as avg_cost,
  SUM(CASE WHEN errors IS NOT NULL THEN 1 ELSE 0 END) as error_count
FROM ai_telemetry
WHERE date = CURRENT_DATE
GROUP BY model_id

-- Cost trends
SELECT
  DATE_TRUNC(&#39;hour&#39;, timestamp) as hour,
  brand,
  SUM(cost) as hourly_cost,
  COUNT(*) as conversation_count,
  SUM(cost) / COUNT(*) as cost_per_conversation
FROM ai_telemetry
WHERE date >= CURRENT_DATE - INTERVAL &#39;7&#39; DAY
GROUP BY hour, brand
ORDER BY hour DESC

Privacy-Preserving Observability

PII Redaction in Logs

TYPESCRIPT
// Redact PII before logging
300">async 300">function logWithRedaction(event: any) {
  300">const redacted = 300">await redactPII(event)

  logger.info(&#39;AI interaction&#39;, redacted)

  // Store PII mapping separately (encrypted, short TTL)
  300">if (event.containsPII) {
    300">await CoreCloud.storePIIMapping({
      requestId: event.requestId,
      mapping: event.piiMapping,
      ttl: 300 // 5 minutes
    })
  }
}

Aggregated Metrics Only

TYPESCRIPT
// Don&#39;t log individual user queries
// ✗ BAD:
logger.info(&#39;User asked: "What is my credit card number?"&#39;)

// ✓ GOOD:
logger.info(&#39;Intent classified&#39;, {
  intent: &#39;AccountInquiry&#39;,
  confidence: 0.89,
  piiDetected: 300">true,
  piiRedacted: 300">true
  // No actual query text logged
})

Conclusion

AI observability transforms black boxes into transparent, auditable systems. By implementing comprehensive telemetry, compliance dashboards, and real-time monitoring, Cloudain built AI that:

Engineers Trust:

  • Complete visibility into performance
  • Fast troubleshooting with distributed tracing
  • Proactive alerts prevent outages

Compliance Teams Trust:

  • 100% audit trail coverage
  • Real-time compliance monitoring
  • Automated evidence for SOC 2/HIPAA/GDPR

Business Leaders Trust:

  • Clear cost attribution
  • User satisfaction tracking
  • ROI measurement

Key principles:

  • Instrument everything from intent to response
  • Aggregate for privacy while preserving insights
  • Stream to multiple sinks (CloudWatch, S3, analytics)
  • Alert intelligently using anomaly detection
  • Make it searchable with structured logs

Results:

  • <3 min mean time to detection (MTTD)
  • <10 min mean time to resolution (MTTR)
  • 100% compliance audit pass rate
  • 24/7 visibility into AI operations

Observability isn't optional-it's the foundation of responsible AI.

Build Observable AI Systems

Ready to see inside your AI?

Schedule an Observability Assessment →

Learn how CoreCloud and AgenticCloud deliver complete AI visibility.

C

Cloudain SRE Team

Expert insights on AI, Cloud, and Compliance solutions. Helping organisations transform their technology infrastructure with innovative strategies.

Unite your teams behind measurable transformation outcomes.

Partner with Cloudain specialists to architect resilient platforms, govern AI responsibly, and accelerate intelligent operations.